
Chapter 22

Genetic Network Design Automation with LOICA

Gonzalo Vidal, Carolus Vitalis, Tamara Matúte, Isaac Núñez,
Fernán Federici, and Timothy J. Rudge

Abstract

Genetic design automation (GDA) is the use of computer-aided design (CAD) in designing genetic
networks. GDA tools are necessary to create more complex synthetic genetic networks in a high-
throughput fashion. At the core of these tools is the abstraction of a hierarchy of standardized components.
The components’ input, output, and interactions must be captured and parametrized from relevant
experimental data. Simulations of genetic networks should use those parameters and include the experi-
mental context to be compared with the experimental results.

This chapter introduces Logical Operators for Integrated Cell Algorithms (LOICA), a Python package
used for designing, modeling, and characterizing genetic networks using a simple object-oriented design
abstraction. LOICA represents different biological and experimental components as classes that interact to
generate models. These models can be parametrized by direct connection to the Flapjack experimental data
management platform to characterize abstracted components with experimental data. The models can be
simulated using stochastic simulation algorithms or ordinary differential equations with varying noise
levels. The simulated data can be managed and published using Flapjack alongside experimental data for
comparison. LOICA genetic network designs can be represented as graphs and plotted as networks for
visual inspection and serialized as Python objects or in the Synthetic Biology Open Language (SBOL)
format for sharing and use in other designs.

Key words Computer-Aided Design, Genetic Design Automation, Genetic Network, Modeling,
SBOL, Synthetic Biology.

1 Introduction

Synthetic Biology or Engineering Biology as an engineering disci-
pline has the Design Build Test Learn (DBTL) cycle at its core.
Modeling is key to the DBTL cycle and is essential to the design and
learn stages, given that a model states a well-defined hypothesis
about the system operation. Therefore, synthetic biologists have
used mathematical and computational models to represent their
hypotheses about how biological systems behave at the Design
stage. Constructing physical implementations of that biological

Jeffrey Carl Braman (ed.), Synthetic Biology: Methods and Protocols, Methods in Molecular Biology, vol. 2760,
https://doi.org/10.1007/978-1-0716-3658-9_22,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2024

393

system at the Build stage and obtaining measurements from sam-
ples of it at the Test stage. Then, experimental data should be
analyzed, characterized, and compared with our design to extract
information at the Learn stage. The information generated at the
Test stage should feed into the Learn and Design stages to increase
the understanding of the biological system improving future mod-
els and designs. Abstraction enables the construction and analysis of
models based on components, devices, and systems that can be
used to compose genetic networks and derive their DNA
sequences. It is the basis for genetic design automation (GDA), as
a computational aided design (CAD) tool for genetic design, which
can accelerate and automate the synthetic genetic network design
process by compiling models into DNA sequences. In order for
GDA to proceed in a rational way, the abstract elements of genetic
networks must be accessible to characterization, allowing parame-
trization of models of their operation and interactions. GDA tools
enable the functional decoupling between researchers working at a
sequence level and researchers working at the systems level
[1, 2]. Standardization is at the foundations of synthetic biology,
enabling the collaborative work of a community. The Synthetic
Biology Open Language (SBOL) is a free and open-source standard
for the representation of biological designs [3]. The SBOL stan-
dard was developed by the synthetic biology community to create a
standardized format for the electronic exchange of information on
the structural and functional aspects of biological designs. This
community developed an ecosystem of software tools to, for exam-
ple, design, model, visualize, store, and share SBOL files [4–
10]. Flapjack is a tool from that ecosystem for Synthetic Biology
experimental data management [9]. Experimental data in Flapjack
can be linked to SBOL metadata in SynBioHub [5].

394 Gonzalo Vidal et al.

Logical Operators for Integrated Cell Algorithms (LOICA) is a
Python package allowing programmatic design, simulation, param-
etrization, and analysis of genetic networks [11]. While perhaps not
as accessible as a graphical user interface, this approach is more
flexible, extensible, and amenable to automation. It can be easily
combined with the large ecosystem of biological Python projects
[9, 12–14], and uses simple programming concepts that are com-
monly understood by researchers from a range of disciplines.
LOICA genetic network designs can be represented as graphs and
plotted as networks for visual inspection. Furthermore, Operators
and Metabolism have models of gene expression and growth which
parameters can be defined as input or obtained through the analysis
of relevant of experimental data [15]. A two-way communication
with Flapjack allows LOICA to get experimental data for model
parametrization and to upload simulated data to the platform in a
straightforward way. GeneticNetworks can generate a SBOL repre-
sentation that can be shared and used as a component in another
design. Here, we describe some use cases and how LOICA can be
used to design, visualize, and model genetic networks.

Genetic Network Design Automation with LOICA 395

2 Materials

2.1 Dependencies 1. Installing LOICA via pip will automatically install some
required packages. These prerequistes include Python 3.8 or a
later version. We recommend the use of an environment man-
ager, such as Anaconda (https://www.anaconda.com/).

2. Additionally, users must install pyFlapjack (see Note 1) to be
able to interact with Flapjack (see next chapter).

2.2 Installation 1. The LOICA Python package is distributed using the Python
Package Index (PyPI), which utilizes the Pip Installs Package
(PIP) for installation and update management. The latest stable
release of LOICA can be installed using the following com-
mands (see Note 2):

pip install loica

2. To verify that the installation was successful, users should be
able to run the following command with no errors:

import loica as lc

3 Methods

In the following sections, we detail how LOICA can be used to
generate genetic network designs, graph visualization and simula-
tions. We exemplify its use by designing a NOR gate [16], a
repressilator [17], and characterizing an inverter, covering the
main use cases. To learn more about the advanced features, we
recommend consulting our previous publication [11] and explor-
ing the source repository https://github.com/RudgeLab/LOICA
with more examples and tutorials, as well as the documentation
https://loica.readthedocs.io.

3.1 Designing a NOR

Gate

To create a NOR genetic network design in LOICA, we instantiate
two representing Acyl Homoserine Lactone (AHL) Supplements,
each of which induce a Receiver Operator that expresses a regula-
tor. These regulators, in turn, repress a Hill2 Operator that
expresses a GFP Reporter. This process can be described step by
step, as follows:

1. Create a GeneticNetwork (Table 1).

nor = lc.GeneticNetwork(vector=0)

396 Gonzalo Vidal et al.

Table 1
Supplement

Parameter Description Format/values Default

name Name of the supplement Str n/a

concentration Concentration of the supplement in Molar int – float n/a

pubchemid PubChemID URI of the supplement Str n/a

supplier_id Supplier ID of the supplement. An URL of the product
that you acquire. Accepts list of the form [product URL,
catalog number, batch].

str – List n/a

sbol_comp SBOL component of the supplement. Str n/a

Table 2
Genetic network

Parameter Description Format/values Default

operators List of Operators that are part of the genetic network List []

regulators List of Regulators that are part of the genetic network List []

reporters List of Reporters that are part of the genetic network List []

vector Flapjack ID of the vector that is associated with
the genetic network. If none use 0.

int – float n/a

2. Create Supplements (Table 2) (see Note 3).

ahl1 = lc.Supplement(name=AHL1)

ahl2 = lc.Supplement(name=AHL2)

3. Create Regulators (Table 3) and add them to the nor Genet-
icNetwork. In this example, we use TetR and LacI.

tetr_reg = lc.Regulator(name=TetR, degradation_
rate=1)

laci_reg = lc.Regulator(name=LacI, degradation_
rate=1)

nor.add_regulator([tetr_reg, laci_reg])

4. Create a Reporter (Table 4) and add it to the nor GeneticNet-
work. The example shows the creation of a GFP Reporter.

Genetic Network Design Automation with LOICA 397

Table 3
Regulator

Parameter Description Format/values Default

name Name of the gene product Str n/a

init_concentration Initial concentration of the gene product in Molar Float 0

degradation_rate Degradation rate of the gene product float 0

type_ Molecular type of the gene product, options are
‘PRO’ (protein) or ‘RNA’ (RNA)

str, optional PRO

uri SynBioHub URI str, optional None

sbol_comp SBOL Component SBOL
Component,
optional

None

color Color displayed on the network representation str lightgreen

Table 4
Reporter

Parameter Description Format/values Default

name Name of the gene product str n/a

init_concentration Initial concentration of the gene product in Molar int – float 0

degradation_rate Degradation rate of the gene product int – float 0

type_ Molecular type of the gene product, can be ‘PRO’
or ‘RNA’

str, optional PRO

uri SynBioHub URI str, optional None

sbol_comp SBOL Component SBOL Component,
optional

None

signal_id Flapjack ID of the Signal that the reporter is
associated with.

str, optional None

color Color displayed on the network representation str, optional white

gfp_rep = lc.Reporter(name=GFP, degradation_
rate=1, signal_id=0, color=green)

rep.add_reporter(gfp_rep)

5. Create Operators and add them to the nor GeneticNetwork.
The example shows the creation of two Receiver Operators
(Table 5) and one Hill2 Operator (Table 6), modeling a tran-
scriptional NOR gate.

398 Gonzalo Vidal et al.

Table 5
Operator receiver

Parameter Description Format/values Default

input The input of the operator that regulates the expression
of the output

Regulator –
Supplement

n/a

output The output of the operator that is regulated by the input Regulator – Reporter n/a

alpha [Basal expression rate, Regulated expression rate in
MEFL/second]

List n/a

K Half expression input concentration in Molar int – float n/a

n Hill coefficient, cooperative degree (unitless) int – float n/a

uri SynBioHub URI str, optional None

sbol_comp SBOL Component SBOL Component,
optional

None

name Name of the operator displayed on the network
representation

str, optional None

color Color displayed on the network representation str, optional skyblue

Table 6
Operator Hill2

Parameter Description Format/values Default

input The inputs of the operator that regulates the expression
of the output

List [Regulator –
Supplement]

n/a

output The output of the operator that is regulated by the input Regulator –
Reporter – List

n/a

alpha Regulated and unregulated expression rates
(see LOICA [11])

List n/a

K Half expression input concentration in Molar List n/a

n Hill coefficient, cooperative degree (unitless) int – float n/a

uri SynBioHub URI str, optional None

sbol_comp SBOL Component SBOL Component,
optional

None

name Name of the operator displayed on the network
representation

str, optional None

color Color displayed on the network representation str, optional orange

ah
ou

ah
ou

te
re
10

Genetic Network Design Automation with LOICA 399

This design represents a set of three transcriptional units.
One transcriptional unit induced by AHL1 that expresses TetR,
another transcriptional unit induced by AHL2 that expresses
LacI, and finally, a transcriptional unit repressed by LacI and
TetR that expresses GFP. All the Operators have parameters to
model a Hill equation.

l1_rec_tetr = lc.Receiver(name=pahl1, input=ahl1,
tput=[tetr_reg], alpha=[10000,0.1], K=10, n=2)

l2_rec_laci = lc.Receiver(name=pahl2, input=ahl2,
tput=laci_reg, alpha=[10000,0.1], K=10, n=2)

tr_laci_nor_gfp = lc.Hill2(name=NOR, input=[tetr_-
g, laci_reg], output=gfp_rep, alpha=[10000,
000,0.1, 0.1], K=[10, 10], n=[2,2])

nor.add_operator([ahl1_rec_tetr, ahl2_rec_laci,
tetr_laci_nor_gfp])

6. Plot the graph representation for visual inspection of the design
(Fig. 1a).

plt.figure(figsize=(3.3,3.3),dpi=300)rep.draw()

7. Alternatively, plot the contracted graph representation for a
simplified visual inspection of the design (Fig. 1b).

plt.figure(figsize=(3.3,3.3), dpi=100) rep.draw
(contracted=True)

8. Create a Metabolism. The example shows the creation of a
SimulatedMetabolism (Table 7) based on the Gompertz
growth model [18].

def growth_rate(t): return lc.metabolism.gom-
pertz_growth_rate(t, 0.01, 1, 1, 1)

def biomass(t): return lc.metabolism.gompertz(t,
0.01, 1, 1, 1)

metabolism = lc.SimulatedMetabolism(LOICA metab,
biomass, growth_rate)

9. Create Samples (Table 8) encapsulating the GeneticNetwork
and the Metabolism with different concentration of Supple-
ment. The example shows the creation of multiple Samples
containing the nor Genetic Network, the simulated metabo-
lism and AHLs at different concentrations.

400 Gonzalo Vidal et al.

Fig. 1 NOR gate genetic network diagram. (a) GeneticNetwork diagram
generated by its draw method, which creates a graph representation and plots
it as a network. (b) Contracted version of the GeneticNetwork graph
representation. In these networks, light blue nodes are Hill1 Operators, orange
nodes are Hill2 Operators, light green nodes are Regulators, pink nodes are
Supplements and Reporters are represented in their assigned color, in this case,
green. Regulators are not shown in the contracted version. Pointy arrows
represent production or induction and blunt arrows represent repression

samples = []

for conc1 in np.logspace(-3, 3, 12):
for conc2 in np.logspace(-3, 3, 12):
sample = lc.Sample(genetic_network=nor,
metabolism=metab)

sample.set_supplement(ahl1, conc1)
sample.set_supplement(ahl2, conc2)
samples.append(sample)

Genetic Network Design Automation with LOICA 401

Table 7
SimulatedMetabolism

Parameter Description Format/values Default

name Name of the metabolism Str None

biomass A function of time that describes biomass f(t) = biomass Function n/a

growth_rate A function of time that describes the growth rate
f(t) = growth rate

Function n/a

Table 8
Sample

Parameter Description Format/values Default

genetic_network Genetic network that is part of the sample GeneticNetwork None

metabolism Metabolism that drives the genetic network in the sample Metabolism None

assay Assay to which this sample belongs Assay None

media Name of the media in the sample str, optional None

strain Name of the strain in the sample str, optional None

10. Create an Assay (Table 9). The example shows the creation of
an Assay that takes 100 measurements every 15 min with a
name, description, and using OD as the biomass signal.

assay = lc.Assay([sample], n_measurements=100,
interval=0.25, name=LOICA NOR gate, descrip-
tion=Simulated NOR gate generated by LOICA,
biomass_signal_id=0

11. Run the Assay. The example shows how to run an Assay with
default parameters; this uses ODEs for simulations (Fig. 2).

assay.run()

3.2 Genetic Ring

Oscillator

To create a genetic ring oscillator design in LOICA, similar to the
repressilator (see Note 4), we instantiate three repressor Regulators,
each of which represses a Hill1 Operator that expresses another
Regulator in a ring fashion, A a B a C a D. One of these operators
expresses a GFP Reporter in a bicistronic way. This process has
some variation for simulations and can be described step by step
as follows:

402 Gonzalo Vidal et al.

Table 9
Assay

Parameter Description Format/values Default

samples List of Samples that belongs to the Assay List[Sample] n/a

n_measurements Number of measurements to take Int n/a

interval Time in hours between each measurements Float n/a

name Name of the Assay Str LOICA assay

description Description of the Assay Str

biomass_signal_id Flapjack ID of the Signal measuring culture
growth (e.g. OD600)

Int None

Fig. 2 NOR gate simulation heatmap. NOR gate simulated with a Gompertz
metabolism and adding Supplements to Samples in 12 concentrations between
-3 and 3 in log space. The Assay runs for 17.5 h measuring every 15 min. High
mean expression is shown in yellow and low expression rate is shown in blue

1. Create a GeneticNetwork.

repressilator = lc.GeneticNetwork(vector=0)

2. Create Regulators and add them to the repressilator Genetic-
Network. In this example, we use TetR, LacI, and CI.

tetr_reg = lc.Regulator(name=TetR, degradation_
rate=1)

ci

r
c

gf
si

laci_reg = lc.Regulator(name=LacI, degradation_
rate=1)

reg = lc.Regulator(name=cI, degradation rate=1)

epressilator.add_regulator([tetr_reg, laci_ reg,
i_reg])

Genetic Network Design Automation with LOICA 403

3. Create a Reporter and add it to the repressilator GeneticNet-
work. The example shows the creation of a GFP Reporter.

p_rep = lc.Reporter(name=GFP, degradation_rate=1,
gnal_id=0, color=green)

rep.add_reporter(gfp_rep)

4. Create Operators and add them to the repressilator Genetic
Network. The example shows the creation of three Hill1
Operators (Table 10), modeling repressible transcriptional
units. A transcriptional unit repressed by LacI that expresses
TetR and GFP, a transcriptional unit repressed by TetR expres-
sing CI and a transcriptional unit repressed by CI expressing
LacI. All the Operators have parameters to model a Hill
equation.

laci_not_tetr_gfp = lc.Hill1(name=pLac, input=la-
ci_reg, output=[tetr_reg, gfp_rep], alpha=

[10000,0.1], K=10, n=2)

Table 10
Operator Hill1

Parameter Description Format/values Default

input The input of the operator that regulates the expression
of the output

Regulator –
Supplement

n/a

output The output of the operator that is regulated by the input Regulator – Reporter n/a

alpha [Basal expression rate, Regulated expression rate in
MEFL/second]

List n/a

K Half expression input concentration in Molar int | float n/a

n Hill coefficient, cooperative degree (unitless) int | float n/a

uri SynBioHub URI str, optional None

sbol_comp SBOL Component SBOL Component,
optional

None

name Name of the operator displayed on the network
representation

str, optional None

color Color displayed on the network representation str, optional skyblue

t
o

c
p

etr_not_ci = lc.Hill1(name=pTet, input=tetr_reg,
utput=ci_reg, alpha=[10000,0.1], K=10, n=2)

i_not_laci = lc.Hill1(name=pcI, input=ci_reg, out-
ut=laci_reg, alpha=[10000,0.1], K=10, n=2)

rep.add_operator([laci_not_tetr_gfp, ci_not_laci,
tetr_not_ci])

404 Gonzalo Vidal et al.

5. Plot the graph representation for visual inspection of the design
(Fig. 3a).

plt.figure(figsize=(3.3,3.3), dpi=100) rep.draw
()

6. Alternatively, plot the contracted graph representation for a
simplified visual inspection of the design (Fig. 3b).

plt.figure(figsize=(3.3,3.3), dpi=100)

rep.draw(contracted=True)

7. Create a Metabolism. The example shows the creation of a
SimulatedMetabolism based on the Gompertz growth
model [18].

def growth_rate(t): return lc.metabolism.gom-
pertz_growth_rate(t, 0.01, 1, 1, 1)

def biomass(t): return lc.metabolism.gompertz(t,
0.01, 1, 1, 1)

metabolism = lc.SimulatedMetabolism(LOICA metab,
biomass, growth_rate)

8. Create a Sample encapsulating the GenticNetwork and the
Metabolism. The example shows the creation of a Sample con-
taining the repressilator and metabolism.

sample = lc.Sample(genetic_network=repressila-
tor, metabolism=metabolism)

9. Create an Assay. The example shows the creation of an Assay
that takes 100 measurements every 15 min with a name,
description and using OD as the biomass signal.

assay = lc.Assay([sample], n_measurements=100,
interval=0.25, name= LOICA repressilator,
description=Simulated repressilator generated
by LOICA, biomass_signal_id=0

Genetic Network Design Automation with LOICA 405

Fig. 3 Simple repressilator genetic network diagram. (a) GeneticNetwork
diagram generated by its draw method, which creates a graph representation
and plots it as a network. (b) Contracted version of the GeneticNetwork graph
representation. In these networks light blue nodes are Operators, light green
nodes are Regulators and Reporters are represented in their assigned color, in
this case green. Regulators are not shown in the contracted version. Pointy
arrows represent production or induction and blunt arrows represent repression

10. Run the Assay. The example shows how to run an Assay with
default parameters, this uses ODEs for simulations (Fig. 4a).

assay.run()

11. Alternatively, run the Assay with noise. The example shows
how to run an Assay with a noise to signal ratio of 10-3; this
uses ODEs with noise for simulations (Fig. 4b).

assay.run(nsr=1e-3)

406 Gonzalo Vidal et al.

Fig. 4 Genetic ring oscillator simulations. (a) Genetic ring oscillator simulation using ordinary differential
equations, lines correspond to the signals of OD and green fluorescence over 25 h. (b) Genetic ring oscillator
simulation using ordinary differential equations with a noise to signal ratio (NSR) of 103, lines correspond to
the signals of OD and green fluorescence over 25 h. (c) Genetic ring oscillator simulation using a stochastic
algorithm, lines correspond to the signals of OD and green fluorescence over 10 h

12. Let us model this genetic network with another metabolism.
Create a Metabolism. The example shows the creation of a
SimulatedMetabolism with a biomass of 1 and no growth rate.

def growth_rate(t):
return 0

def biomass(t):
return 1

metabolism = lc.SimulatedMetabolism(LOICA metab,
biomass, growth_rate)

13. Create a Sample encapsulating the GeneticNetwork and the
Metabolism. The example shows the creation of a Sample
containing the repressilator and metabolism.

Genetic Network Design Automation with LOICA 407

sample = lc.Sample(genetic_network=repressila-
tor, metabolism=metabolism)

14. Create an Assay. The example shows the creation of an Assay
that takes 100 measurements every 15 min with a name,
description and using OD as the biomass signal.

assay = lc.Assay([sample], n_measure-
ments=1000, interval=1e-2, name=LOICA repres-
silator, description=Simulated repressilator
generated by LOICA, biomass_signal_id=0

15. Run the Assay. The example shows how to run an Assay with
default parameters, this uses ODEs for simulations (Fig. 4c).

assay.run(stochastic=True)

3.3 Receiver and

Inverter

Characterization

To characterize a receiver in LOICA, we connect to experimental
data in Flapjack, then instantiate a Receiver Operator (See Note 5)
and use the characterize method. To characterize an inverter in
LOICA, we connect to experimental data in Flapjack, then instan-
tiate a Hill1 Operator to characterize and pass a previously char-
acterized Receiver as argument Operator and then a Hill1
Operator. This process can be described step by step, as follows:

1. Log in to your Flapjack account. For more information on
Flapjack, see the next Chapter.

fj = Flapjack(url_base=flapjack.rudge-lab.
org:8000)

fj.log_in(username=input(Flapjack username:),
password=getpass.getpass(Password:))

2. Get Flapjack data objects.

vector = fj.get(vector, name=pAN1818_cyan)

yfp = fj.get(signal, name=YFP)

vector = fj.get(vector, name=pAN1818_cyan)

media = fj.get(media, name=M9 Glicerol)

strain = fj.get(strain, name=Top10)

biomass_signal = fj.get(signal, name=OD))

408 Gonzalo Vidal et al.

3. Create a receiver GeneticNetwork.

receiver = lc.GeneticNetwork(vector=vector.id
[0])

4. Create a inducer Supplement. In this example, we use IPTG.

iptg = lc.Supplement(name=IPTG)

5. Create a Reporter and add it to the receiver GeneticNetwork.
The example shows the creation of a YFP Reporter.

yfp_rep = lc.Reporter(name=YFP, degradation_-
rate=0, signal_id=yfp.id[0], color=green)

receiver.add_reporter(yfp_rep)

6. Create an Operator and add it to the receiver Genetic Network.
The example shows the creation of a Receiver Operator.

This design represents a transcriptional units that gets
induced with IPTG and expresses GFP. The Operators have
parameters to model a Hill equation.

iptg_rec_yfp = lc.Receiver(input=iptg, output=yf-
p_rep, alpha=[1e-3,1e4], K=1e-5, n=2)

receiver.add_operator(iptg_rec_yfp)

7. Plot the graph representation for visual inspection of the
receiver design (Fig. 5a left panel).

plt.figure(figsize=(3,3), dpi=300)

receiver.draw()

8. Use the characterize method. This will fit the experimental data
to the Receiver Operator model parametrizing alpha, K and n.

iptg_rec_yfp.characterize(fj, vector=vector.id,
media=media.id, strain=strain.id, signal=yfp.id,
biomass_signal=biomass_signal.id)

9. Connect to inverter experimental data.

vector2 = fj.get(vector, name=pSrpR-S3_cyan)

10. Create an inverter GeneticNetwork.

inverter = lc.GeneticNetwork(vector=vector2.id
[0])

Genetic Network Design Automation with LOICA 409

Fig. 5 LOICA inverter characterization workflow. (a) To characterize an inverter
you need to build two genetic networks, one for the receiver and another
connecting the receiver with an NOT gate to for the inverter. (b) These genetic
networks needs to be measured under different concentration of AHL to drive the
expression of the receiver. (c) The measurements can be uploaded to Flapjack
by it built in parser. (d) LOICA can access experimental data in flapjack to
characterize the Receiver and then the Hill1 Operator, thus parametrizing an
inverter

1

s
c_
s
si

410 Gonzalo Vidal et al.

1. Create a Regulator and add it to the inverter GeneticNetwork.
In this example, we use SrpR.

srpr_reg = lc.Regulator(SrpR)

inverter.add_regulator(srpr_reg)

12. Modify the Receiver from previous steps, create an Operator
and add them to the inverter GeneticNetwork. This design
represents a set of two transcriptional units, one induced by
IPTG that expresses SrpR and another repressed by SrpR that
expresses GFP.

iptg_rec_srpr = iptg_rec_yfp

iptg_rec_srpr.output = srpr_reg

srpr_not_yfp = lc.Hill1(input=srpr_reg, output=yf-
p_rep, alpha=[10,1e-3], K=1e3, n=2)

inverter.add_operator([srpr_not_yfp, ipt-
g_rec_srpr])

13. Plot the graph representation for visual inspection of the
design (Fig. 5a right panel).

plt.figure(figsize=(3.3,3.3), dpi=300) inver-
ter.draw()

14. Assemble the genetic networks from the designs, prepare sam-
ples, and measure them in a serial dilution of inducer (Fig. 5b).
The example shows the preparation of two 96-well plates with a
gradient of AHL inducer, one with each genetic network.
Fluorescence and OD are measured in a plate reader.

15. Collect the experimental data, usually an Excel output, and
upload it to Flapjack (Fig. 5d)

16. Use the characterize method. This will get experimental data
from Flapjack and fit the Hill1 Operator model, parametrizing
alpha, K and n (Fig. 5d). Operators characterized from experi-
mental data can be used to build new genetic networks and
simulate their behaviour (see Note 6).

rpr_not_yfp.characterize(fj, receiver=iptg_ re-
yfp, inverter=vector2.id, media=media.id, strain=-

t r a i n . i d , s i g n a l = y f p . i d , b i o m a s s _
gnal=biomass_signal.id) gamma=0

Genetic Network Design Automation with LOICA 411

4 Notes

1. A Flapjack account is required to run certain examples; if you
do not already have an account, you may register following the
instructions in the Flapjack chapter.

2. The version of LOICA used during in this example is 1.0.5.

3. Supplements are added to Sample.

4. The original repressilator constructed by Elowitz [17] has the
functional repressilator in one plasmid and the reporter in
another. For simplicity, in this design, we get the reporter
expressed with one of the repressors in a bicistronic fashion.

5. This code is made using: from flapjack import*.

6. More details can be found in https://github.com/RudgeLab/
LOICA/tree/master/notebooks.

References

1. Endy D (2005) Foundations for engineering
biology. Nature 438(7067):449

2. Aldulijan I, Beal J, Billerbeck S, Bouffard J,
Chambonnier G, Ntelkis N, Guerreiro I,
Holub M, Ross P, Selvarajah V et al
(2023) Functional synthetic biology.. Synth
Biol 8(1):ysad006

3. McLaughlin JA, Beal J, Mısırlı G, Grünberg R,
Bartley BA, Scott-Brown J, Vaidyanathan P,
Fontanarrosa P, Oberortner E, Wipat A et al
(2020) The synthetic biology open language
(SBOL) version 3: simplified data exchange
for bioengineering. Front Bioeng Biotechnol
8:1009

4. Mitchell T, Beal J, Bartley B (2022) pySBOL3:
SBOL3 for python programmers. ACS Synth
Biol 11(7):2523

5. McLaughlin JA, Myers CJ, Zundel Z,
Mısırlı G, Zhang M, Ofiteru ID, Goni-
Moreno A, Wipat A (2018) SynBioHub: a
standards-enabled design repository for syn-
thetic biology. ACS Synth Biol 7(2):682

6. Sents Z, Stoughton TE, Buecherl L, Thomas
PJ, Fontanarrosa P, Myers CJ (2023) SynBio-
Suite: a tool for improving the workflow for
genetic design and modeling. ACS Synth Biol
12(3):892

7. Crowther M, Wipat A, Goñi-Moreno Á (2022)
A network approach to genetic circuit designs.
ACS Synth Biol 11(9):3058

8. Jones TS, Oliveira SM, Myers CJ, Voigt CA,
Densmore D (2022) Genetic circuit design

automation with Cello 2.0. Nat Protoc 17(4):
1097

9. Yáñez Feliú G, Earle Gómez B, Codoceo
Berrocal V, Muñoz Silva M, Nuñez IN, Matute
TF, Arce Medina A, Vidal G, Vitalis C, Dahlin J
et al (2020) Flapjack: Data management and
analysis for genetic circuit characterization.
ACS Synth Biol 10(1):183

10. Samineni SP, Vidal G, Vitalis C, Feliú GY,
Rudge TJ, Myers CJ, Mante J (2023) Experi-
mental data connector (XDC): integrating the
capture of experimental data and metadata
using standard formats and digital repositories.
ACS Synth Biol 12(4):1364

11. Vidal G, Vitalis C, Rudge TJ (2022) LOICA:
Integrating models with data for genetic net-
work design automation. ACS Synth Biol
11(5):1984

12. Bartley BA, Choi K, Samineni M, Zundel Z,
Nguyen T, Myers CJ, Sauro HM (2018) pyS-
BOL: a python package for genetic design
automation and standardization. ACS Synth
Biol 8(7):1515

13. Yeoh JW, Swainston N, Vegh P, Zulkower V,
Carbonell P, Holowko MB, Peddinti G, Poh
CL (2021) Synbiopython: an open-source soft-
ware library for synthetic biology. Synth Biol 6:
Article ysab001

14. Chapman B, Chang J (2000) Biopython:
Python tools for computational biology. ACM
Sigbio Newslett 20(2):15

412 Gonzalo Vidal et al.

15. Vidal G, Vitalis C, Muñoz Silva M, Castillo-
Passi C, Yáñez Feliú G, Federici F, Rudge TJ
(2022) Accurate characterization of dynamic
microbial gene expression and growth rate pro-
files. Synth Biol 7(1):ysac020

16. Tamsir A, Tabor JJ, Voigt CA (2011) Robust
multicellular computing using genetically
encoded NOR gates and chemical ‘wires’.
Nature 469(7329):212

17. Elowitz MB, Leibler S (2000) A synthetic oscil-
latory network of transcriptional regulators.
Nature 403(6767):335

18. Zwietering MH, Jongenburger I, Rombouts
FM, Van’t Riet K (1990) Modeling of the bac-
terial growth curve. Appl Environ Microbiol
56(6):1875

