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Fernán Federici, and Timothy J. Rudge 

Abstract 

Genetic design automation (GDA) is the use of computer-aided design (CAD) in designing genetic 
networks. GDA tools are necessary to create more complex synthetic genetic networks in a high-
throughput fashion. At the core of these tools is the abstraction of a hierarchy of standardized components. 
The components’ input, output, and interactions must be captured and parametrized from relevant 
experimental data. Simulations of genetic networks should use those parameters and include the experi-
mental context to be compared with the experimental results. 

This chapter introduces Logical Operators for Integrated Cell Algorithms (LOICA), a Python package 
used for designing, modeling, and characterizing genetic networks using a simple object-oriented design 
abstraction. LOICA represents different biological and experimental components as classes that interact to 
generate models. These models can be parametrized by direct connection to the Flapjack experimental data 
management platform to characterize abstracted components with experimental data. The models can be 
simulated using stochastic simulation algorithms or ordinary differential equations with varying noise 
levels. The simulated data can be managed and published using Flapjack alongside experimental data for 
comparison. LOICA genetic network designs can be represented as graphs and plotted as networks for 
visual inspection and serialized as Python objects or in the Synthetic Biology Open Language (SBOL) 
format for sharing and use in other designs. 

Key words Computer-Aided Design, Genetic Design Automation, Genetic Network, Modeling, 
SBOL, Synthetic Biology. 

1 Introduction 

Synthetic Biology or Engineering Biology as an engineering disci-
pline has the Design Build Test Learn (DBTL) cycle at its core. 
Modeling is key to the DBTL cycle and is essential to the design and 
learn stages, given that a model states a well-defined hypothesis 
about the system operation. Therefore, synthetic biologists have 
used mathematical and computational models to represent their 
hypotheses about how biological systems behave at the Design 
stage. Constructing physical implementations of that biological
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system at the Build stage and obtaining measurements from sam-
ples of it at the Test stage. Then, experimental data should be 
analyzed, characterized, and compared with our design to extract 
information at the Learn stage. The information generated at the 
Test stage should feed into the Learn and Design stages to increase 
the understanding of the biological system improving future mod-
els and designs. Abstraction enables the construction and analysis of 
models based on components, devices, and systems that can be 
used to compose genetic networks and derive their DNA 
sequences. It is the basis for genetic design automation (GDA), as 
a computational aided design (CAD) tool for genetic design, which 
can accelerate and automate the synthetic genetic network design 
process by compiling models into DNA sequences. In order for 
GDA to proceed in a rational way, the abstract elements of genetic 
networks must be accessible to characterization, allowing parame-
trization of models of their operation and interactions. GDA tools 
enable the functional decoupling between researchers working at a 
sequence level and researchers working at the systems level 
[1, 2]. Standardization is at the foundations of synthetic biology, 
enabling the collaborative work of a community. The Synthetic 
Biology Open Language (SBOL) is a free and open-source standard 
for the representation of biological designs [3]. The SBOL stan-
dard was developed by the synthetic biology community to create a 
standardized format for the electronic exchange of information on 
the structural and functional aspects of biological designs. This 
community developed an ecosystem of software tools to, for exam-
ple, design, model, visualize, store, and share SBOL files [4– 
10]. Flapjack is a tool from that ecosystem for Synthetic Biology 
experimental data management [9]. Experimental data in Flapjack 
can be linked to SBOL metadata in SynBioHub [5].
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Logical Operators for Integrated Cell Algorithms (LOICA) is a 
Python package allowing programmatic design, simulation, param-
etrization, and analysis of genetic networks [11]. While perhaps not 
as accessible as a graphical user interface, this approach is more 
flexible, extensible, and amenable to automation. It can be easily 
combined with the large ecosystem of biological Python projects 
[9, 12–14], and uses simple programming concepts that are com-
monly understood by researchers from a range of disciplines. 
LOICA genetic network designs can be represented as graphs and 
plotted as networks for visual inspection. Furthermore, Operators 
and Metabolism have models of gene expression and growth which 
parameters can be defined as input or obtained through the analysis 
of relevant of experimental data [15]. A two-way communication 
with Flapjack allows LOICA to get experimental data for model 
parametrization and to upload simulated data to the platform in a 
straightforward way. GeneticNetworks can generate a SBOL repre-
sentation that can be shared and used as a component in another 
design. Here, we describe some use cases and how LOICA can be 
used to design, visualize, and model genetic networks.
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2 Materials 

2.1 Dependencies 1. Installing LOICA via pip will automatically install some 
required packages. These prerequistes include Python 3.8 or a 
later version. We recommend the use of an environment man-
ager, such as Anaconda (https://www.anaconda.com/). 

2. Additionally, users must install pyFlapjack (see Note 1) to be  
able to interact with Flapjack (see next chapter). 

2.2 Installation 1. The LOICA Python package is distributed using the Python 
Package Index (PyPI), which utilizes the Pip Installs Package 
(PIP) for installation and update management. The latest stable 
release of LOICA can be installed using the following com-
mands (see Note 2): 

pip install loica 

2. To verify that the installation was successful, users should be 
able to run the following command with no errors: 

import loica as lc 

3 Methods 

In the following sections, we detail how LOICA can be used to 
generate genetic network designs, graph visualization and simula-
tions. We exemplify its use by designing a NOR gate [16], a 
repressilator [17], and characterizing an inverter, covering the 
main use cases. To learn more about the advanced features, we 
recommend consulting our previous publication [11] and explor-
ing the source repository https://github.com/RudgeLab/LOICA 
with more examples and tutorials, as well as the documentation 
https://loica.readthedocs.io. 

3.1 Designing a NOR 

Gate 

To create a NOR genetic network design in LOICA, we instantiate 
two representing Acyl Homoserine Lactone (AHL) Supplements, 
each of which induce a Receiver Operator that expresses a regula-
tor. These regulators, in turn, repress a Hill2 Operator that 
expresses a GFP Reporter. This process can be described step by 
step, as follows: 

1. Create a GeneticNetwork (Table 1). 

nor = lc.GeneticNetwork(vector=0)
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Table 1 
Supplement 

Parameter Description Format/values Default 

name Name of the supplement Str n/a 

concentration Concentration of the supplement in Molar int – float n/a 

pubchemid PubChemID URI of the supplement Str n/a 

supplier_id Supplier ID of the supplement. An URL of the product 
that you acquire. Accepts list of the form [product URL, 
catalog number, batch]. 

str – List n/a 

sbol_comp SBOL component of the supplement. Str n/a 

Table 2 
Genetic network 

Parameter Description Format/values Default 

operators List of Operators that are part of the genetic network List [] 

regulators List of Regulators that are part of the genetic network List [] 

reporters List of Reporters that are part of the genetic network List [] 

vector Flapjack ID of the vector that is associated with 
the genetic network. If none use 0. 

int – float n/a 

2. Create Supplements (Table 2) (see Note 3). 

ahl1 = lc.Supplement(name=AHL1) 

ahl2 = lc.Supplement(name=AHL2) 

3. Create Regulators (Table 3) and add them to the nor Genet-
icNetwork. In this example, we use TetR and LacI. 

tetr_reg = lc.Regulator(name=TetR, degradation_ 
rate=1) 

laci_reg = lc.Regulator(name=LacI, degradation_ 
rate=1) 

nor.add_regulator([tetr_reg, laci_reg]) 

4. Create a Reporter (Table 4) and add it to the nor GeneticNet-
work. The example shows the creation of a GFP Reporter.
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Table 3 
Regulator 

Parameter Description Format/values Default 

name Name of the gene product Str n/a 

init_concentration Initial concentration of the gene product in Molar Float 0 

degradation_rate Degradation rate of the gene product float 0 

type_ Molecular type of the gene product, options are 
‘PRO’ (protein) or ‘RNA’ (RNA) 

str, optional PRO 

uri SynBioHub URI str, optional None 

sbol_comp SBOL Component SBOL 
Component, 
optional 

None 

color Color displayed on the network representation str lightgreen 

Table 4 
Reporter 

Parameter Description Format/values Default 

name Name of the gene product str n/a 

init_concentration Initial concentration of the gene product in Molar int – float 0 

degradation_rate Degradation rate of the gene product int – float 0 

type_ Molecular type of the gene product, can be ‘PRO’ 
or ‘RNA’ 

str, optional PRO 

uri SynBioHub URI str, optional None 

sbol_comp SBOL Component SBOL Component, 
optional 

None 

signal_id Flapjack ID of the Signal that the reporter is 
associated with. 

str, optional None 

color Color displayed on the network representation str, optional white 

gfp_rep = lc.Reporter(name=GFP, degradation_ 
rate=1, signal_id=0, color=green) 

rep.add_reporter(gfp_rep) 

5. Create Operators and add them to the nor GeneticNetwork. 
The example shows the creation of two Receiver Operators 
(Table 5) and one Hill2 Operator (Table 6), modeling a tran-
scriptional NOR gate.
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Table 5 
Operator receiver 

Parameter Description Format/values Default 

input The input of the operator that regulates the expression 
of the output 

Regulator – 
Supplement 

n/a 

output The output of the operator that is regulated by the input Regulator – Reporter n/a 

alpha [Basal expression rate, Regulated expression rate in 
MEFL/second] 

List n/a 

K Half expression input concentration in Molar int – float n/a 

n Hill coefficient, cooperative degree (unitless) int – float n/a 

uri SynBioHub URI str, optional None 

sbol_comp SBOL Component SBOL Component, 
optional 

None 

name Name of the operator displayed on the network 
representation 

str, optional None 

color Color displayed on the network representation str, optional skyblue 

Table 6 
Operator Hill2 

Parameter Description Format/values Default 

input The inputs of the operator that regulates the expression 
of the output 

List [Regulator – 
Supplement] 

n/a 

output The output of the operator that is regulated by the input Regulator – 
Reporter – List 

n/a 

alpha Regulated and unregulated expression rates 
(see LOICA [11]) 

List n/a 

K Half expression input concentration in Molar List n/a 

n Hill coefficient, cooperative degree (unitless) int – float n/a 

uri SynBioHub URI str, optional None 

sbol_comp SBOL Component SBOL Component, 
optional 

None 

name Name of the operator displayed on the network 
representation 

str, optional None 

color Color displayed on the network representation str, optional orange
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This design represents a set of three transcriptional units. 
One transcriptional unit induced by AHL1 that expresses TetR, 
another transcriptional unit induced by AHL2 that expresses 
LacI, and finally, a transcriptional unit repressed by LacI and 
TetR that expresses GFP. All the Operators have parameters to 
model a Hill equation. 

l1_rec_tetr = lc.Receiver(name=pahl1, input=ahl1, 
tput=[tetr_reg], alpha=[10000,0.1], K=10, n=2) 

l2_rec_laci = lc.Receiver(name=pahl2, input=ahl2, 
tput=laci_reg, alpha=[10000,0.1], K=10, n=2) 

tr_laci_nor_gfp = lc.Hill2(name=NOR, input=[tetr_-
g, laci_reg], output=gfp_rep, alpha=[10000, 
000,0.1, 0.1], K=[10, 10], n=[2,2]) 

nor.add_operator([ahl1_rec_tetr, ahl2_rec_laci, 
tetr_laci_nor_gfp]) 

6. Plot the graph representation for visual inspection of the design 
(Fig. 1a). 

plt.figure(figsize=(3.3,3.3),dpi=300)rep.draw() 

7. Alternatively, plot the contracted graph representation for a 
simplified visual inspection of the design (Fig. 1b). 

plt.figure(figsize=(3.3,3.3), dpi=100) rep.draw 
(contracted=True) 

8. Create a Metabolism. The example shows the creation of a 
SimulatedMetabolism (Table 7) based on the Gompertz 
growth model [18]. 

def growth_rate(t): return lc.metabolism.gom-
pertz_growth_rate(t, 0.01, 1, 1, 1) 

def biomass(t): return lc.metabolism.gompertz(t, 
0.01, 1, 1, 1) 

metabolism = lc.SimulatedMetabolism(LOICA metab, 
biomass, growth_rate) 

9. Create Samples (Table 8) encapsulating the GeneticNetwork 
and the Metabolism with different concentration of Supple-
ment. The example shows the creation of multiple Samples 
containing the nor Genetic Network, the simulated metabo-
lism and AHLs at different concentrations.
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Fig. 1 NOR gate genetic network diagram. (a) GeneticNetwork diagram 
generated by its draw method, which creates a graph representation and plots 
it as a network. (b) Contracted version of the GeneticNetwork graph 
representation. In these networks, light blue nodes are Hill1 Operators, orange 
nodes are Hill2 Operators, light green nodes are Regulators, pink nodes are 
Supplements and Reporters are represented in their assigned color, in this case, 
green. Regulators are not shown in the contracted version. Pointy arrows 
represent production or induction and blunt arrows represent repression 

samples = [] 

for conc1 in np.logspace(-3, 3, 12): 
for conc2 in np.logspace(-3, 3, 12): 
sample = lc.Sample(genetic_network=nor, 
metabolism=metab)



sample.set_supplement(ahl1, conc1) 
sample.set_supplement(ahl2, conc2) 
samples.append(sample) 
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Table 7 
SimulatedMetabolism 

Parameter Description Format/values Default 

name Name of the metabolism Str None 

biomass A function of time that describes biomass f(t) = biomass Function n/a 

growth_rate A function of time that describes the growth rate 
f(t) = growth rate 

Function n/a 

Table 8 
Sample 

Parameter Description Format/values Default 

genetic_network Genetic network that is part of the sample GeneticNetwork None 

metabolism Metabolism that drives the genetic network in the sample Metabolism None 

assay Assay to which this sample belongs Assay None 

media Name of the media in the sample str, optional None 

strain Name of the strain in the sample str, optional None 

10. Create an Assay (Table 9). The example shows the creation of 
an Assay that takes 100 measurements every 15 min with a 
name, description, and using OD as the biomass signal. 

assay = lc.Assay([sample], n_measurements=100, 
interval=0.25, name=LOICA NOR gate, descrip-
tion=Simulated NOR gate generated by LOICA, 
biomass_signal_id=0 

11. Run the Assay. The example shows how to run an Assay with 
default parameters; this uses ODEs for simulations (Fig. 2). 

assay.run() 

3.2 Genetic Ring 

Oscillator 

To create a genetic ring oscillator design in LOICA, similar to the 
repressilator (see Note 4), we instantiate three repressor Regulators, 
each of which represses a Hill1 Operator that expresses another 
Regulator in a ring fashion, A a B a C a D. One of these operators 
expresses a GFP Reporter in a bicistronic way. This process has 
some variation for simulations and can be described step by step 
as follows:



402 Gonzalo Vidal et al.

Table 9 
Assay 

Parameter Description Format/values Default 

samples List of Samples that belongs to the Assay List[Sample] n/a 

n_measurements Number of measurements to take Int n/a 

interval Time in hours between each measurements Float n/a 

name Name of the Assay Str LOICA assay 

description Description of the Assay Str 

biomass_signal_id Flapjack ID of the Signal measuring culture 
growth (e.g. OD600) 

Int None 

Fig. 2 NOR gate simulation heatmap. NOR gate simulated with a Gompertz 
metabolism and adding Supplements to Samples in 12 concentrations between
-3 and 3 in log space. The Assay runs for 17.5 h measuring every 15 min. High 
mean expression is shown in yellow and low expression rate is shown in blue 

1. Create a GeneticNetwork. 

repressilator = lc.GeneticNetwork(vector=0) 

2. Create Regulators and add them to the repressilator Genetic-
Network. In this example, we use TetR, LacI, and CI. 

tetr_reg = lc.Regulator(name=TetR, degradation_ 
rate=1)
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laci_reg = lc.Regulator(name=LacI, degradation_ 
rate=1) 

_reg = lc.Regulator(name=cI, degradation_ rate=1) 

epressilator.add_regulator([tetr_reg, laci_ reg, 
i_reg]) 
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3. Create a Reporter and add it to the repressilator GeneticNet-
work. The example shows the creation of a GFP Reporter. 

p_rep = lc.Reporter(name=GFP, degradation_rate=1, 
gnal_id=0, color=green) 

rep.add_reporter(gfp_rep) 

4. Create Operators and add them to the repressilator Genetic 
Network. The example shows the creation of three Hill1 
Operators (Table 10), modeling repressible transcriptional 
units. A transcriptional unit repressed by LacI that expresses 
TetR and GFP, a transcriptional unit repressed by TetR expres-
sing CI and a transcriptional unit repressed by CI expressing 
LacI. All the Operators have parameters to model a Hill 
equation. 

laci_not_tetr_gfp = lc.Hill1(name=pLac, input=la-
ci_reg,  output=[tetr_reg,  gfp_rep],  alpha= 

[10000,0.1], K=10, n=2)

Table 10 
Operator Hill1 

Parameter Description Format/values Default 

input The input of the operator that regulates the expression 
of the output 

Regulator – 
Supplement 

n/a 

output The output of the operator that is regulated by the input Regulator – Reporter n/a 

alpha [Basal expression rate, Regulated expression rate in 
MEFL/second] 

List n/a 

K Half expression input concentration in Molar int | float n/a 

n Hill coefficient, cooperative degree (unitless) int | float n/a 

uri SynBioHub URI str, optional None 

sbol_comp SBOL Component SBOL Component, 
optional 

None 

name Name of the operator displayed on the network 
representation 

str, optional None 

color Color displayed on the network representation str, optional skyblue
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etr_not_ci = lc.Hill1(name=pTet, input=tetr_reg, 
utput=ci_reg, alpha=[10000,0.1], K=10, n=2) 

i_not_laci = lc.Hill1(name=pcI, input=ci_reg, out-
ut=laci_reg, alpha=[10000,0.1], K=10, n=2) 

rep.add_operator([laci_not_tetr_gfp, ci_not_laci, 
tetr_not_ci])

404 Gonzalo Vidal et al.

5. Plot the graph representation for visual inspection of the design 
(Fig. 3a). 

plt.figure(figsize=(3.3,3.3), dpi=100) rep.draw 
() 

6. Alternatively, plot the contracted graph representation for a 
simplified visual inspection of the design (Fig. 3b). 

plt.figure(figsize=(3.3,3.3), dpi=100) 

rep.draw(contracted=True) 

7. Create a Metabolism. The example shows the creation of a 
SimulatedMetabolism based on the Gompertz growth 
model [18]. 

def growth_rate(t): return lc.metabolism.gom-
pertz_growth_rate(t, 0.01, 1, 1, 1) 

def biomass(t): return lc.metabolism.gompertz(t, 
0.01, 1, 1, 1) 

metabolism = lc.SimulatedMetabolism(LOICA metab, 
biomass, growth_rate) 

8. Create a Sample encapsulating the GenticNetwork and the 
Metabolism. The example shows the creation of a Sample con-
taining the repressilator and metabolism. 

sample = lc.Sample(genetic_network=repressila-
tor, metabolism=metabolism) 

9. Create an Assay. The example shows the creation of an Assay 
that takes 100 measurements every 15 min with a name, 
description and using OD as the biomass signal. 

assay = lc.Assay([sample], n_measurements=100, 
interval=0.25, name= LOICA repressilator, 
description=Simulated repressilator generated 
by LOICA, biomass_signal_id=0
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Fig. 3 Simple repressilator genetic network diagram. (a) GeneticNetwork 
diagram generated by its draw method, which creates a graph representation 
and plots it as a network. (b) Contracted version of the GeneticNetwork graph 
representation. In these networks light blue nodes are Operators, light green 
nodes are Regulators and Reporters are represented in their assigned color, in 
this case green. Regulators are not shown in the contracted version. Pointy 
arrows represent production or induction and blunt arrows represent repression 

10. Run the Assay. The example shows how to run an Assay with 
default parameters, this uses ODEs for simulations (Fig. 4a). 

assay.run() 

11. Alternatively, run the Assay with noise. The example shows 
how to run an Assay with a noise to signal ratio of 10-3; this 
uses ODEs with noise for simulations (Fig. 4b). 

assay.run(nsr=1e-3)
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Fig. 4 Genetic ring oscillator simulations. (a) Genetic ring oscillator simulation using ordinary differential 
equations, lines correspond to the signals of OD and green fluorescence over 25 h. (b) Genetic ring oscillator 
simulation using ordinary differential equations with a noise to signal ratio (NSR) of 103, lines correspond to 
the signals of OD and green fluorescence over 25 h. (c) Genetic ring oscillator simulation using a stochastic 
algorithm, lines correspond to the signals of OD and green fluorescence over 10 h 

12. Let us model this genetic network with another metabolism. 
Create a Metabolism. The example shows the creation of a 
SimulatedMetabolism with a biomass of 1 and no growth rate. 

def growth_rate(t): 
return 0 

def biomass(t): 
return 1 

metabolism = lc.SimulatedMetabolism(LOICA metab, 
biomass, growth_rate) 

13. Create a Sample encapsulating the GeneticNetwork and the 
Metabolism. The example shows the creation of a Sample 
containing the repressilator and metabolism.
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sample = lc.Sample(genetic_network=repressila-
tor, metabolism=metabolism) 

14. Create an Assay. The example shows the creation of an Assay 
that takes 100 measurements every 15 min with a name, 
description and using OD as the biomass signal. 

assay  = lc.Assay([sample],  n_measure-
ments=1000, interval=1e-2, name=LOICA repres-
silator, description=Simulated repressilator 
generated by LOICA, biomass_signal_id=0 

15. Run the Assay. The example shows how to run an Assay with 
default parameters, this uses ODEs for simulations (Fig. 4c). 

assay.run(stochastic=True) 

3.3 Receiver and 

Inverter 

Characterization 

To characterize a receiver in LOICA, we connect to experimental 
data in Flapjack, then instantiate a Receiver Operator (See Note 5) 
and use the characterize method. To characterize an inverter in 
LOICA, we connect to experimental data in Flapjack, then instan-
tiate a Hill1 Operator to characterize and pass a previously char-
acterized Receiver as argument Operator and then a Hill1 
Operator. This process can be described step by step, as follows: 

1. Log in to your Flapjack account. For more information on 
Flapjack, see the next Chapter. 

fj = Flapjack(url_base=flapjack.rudge-lab. 
org:8000) 

fj.log_in(username=input(Flapjack username: ), 
password=getpass.getpass(Password: )) 

2. Get Flapjack data objects. 

vector = fj.get(vector, name=pAN1818_cyan) 

yfp = fj.get(signal, name=YFP) 

vector = fj.get(vector, name=pAN1818_cyan) 

media = fj.get(media, name=M9 Glicerol) 

strain = fj.get(strain, name=Top10) 

biomass_signal = fj.get(signal, name=OD))
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3. Create a receiver GeneticNetwork. 

receiver = lc.GeneticNetwork(vector=vector.id 
[0]) 

4. Create a inducer Supplement. In this example, we use IPTG. 

iptg = lc.Supplement(name=IPTG) 

5. Create a Reporter and add it to the receiver GeneticNetwork. 
The example shows the creation of a YFP Reporter. 

yfp_rep = lc.Reporter(name=YFP, degradation_-
rate=0, signal_id=yfp.id[0], color=green) 

receiver.add_reporter(yfp_rep) 

6. Create an Operator and add it to the receiver Genetic Network. 
The example shows the creation of a Receiver Operator. 

This design represents a transcriptional units that gets 
induced with IPTG and expresses GFP. The Operators have 
parameters to model a Hill equation. 

iptg_rec_yfp = lc.Receiver(input=iptg, output=yf-
p_rep, alpha=[1e-3,1e4], K=1e-5, n=2) 

receiver.add_operator(iptg_rec_yfp) 

7. Plot the graph representation for visual inspection of the 
receiver design (Fig. 5a left panel). 

plt.figure(figsize=(3,3), dpi=300) 

receiver.draw() 

8. Use the characterize method. This will fit the experimental data 
to the Receiver Operator model parametrizing alpha, K and n. 

iptg_rec_yfp.characterize( fj, vector=vector.id, 
media=media.id, strain=strain.id, signal=yfp.id, 
biomass_signal=biomass_signal.id) 

9. Connect to inverter experimental data. 

vector2 = fj.get(vector, name=pSrpR-S3_cyan) 

10. Create an inverter GeneticNetwork. 

inverter = lc.GeneticNetwork(vector=vector2.id 
[0])
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Fig. 5 LOICA inverter characterization workflow. (a) To characterize an inverter 
you need to build two genetic networks, one for the receiver and another 
connecting the receiver with an NOT gate to for the inverter. (b) These genetic 
networks needs to be measured under different concentration of AHL to drive the 
expression of the receiver. (c) The measurements can be uploaded to Flapjack 
by it built in parser. (d) LOICA can access experimental data in flapjack to 
characterize the Receiver and then the Hill1 Operator, thus parametrizing an 
inverter
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1. Create a Regulator and add it to the inverter GeneticNetwork. 
In this example, we use SrpR. 

srpr_reg = lc.Regulator(SrpR) 

inverter.add_regulator(srpr_reg) 

12. Modify the Receiver from previous steps, create an Operator 
and add them to the inverter GeneticNetwork. This design 
represents a set of two transcriptional units, one induced by 
IPTG that expresses SrpR and another repressed by SrpR that 
expresses GFP. 

iptg_rec_srpr = iptg_rec_yfp 

iptg_rec_srpr.output = srpr_reg 

srpr_not_yfp = lc.Hill1(input=srpr_reg, output=yf-
p_rep, alpha=[10,1e-3], K=1e3, n=2) 

inverter.add_operator([srpr_not_yfp,  ipt-
g_rec_srpr]) 

13. Plot the graph representation for visual inspection of the 
design (Fig. 5a right panel). 

plt.figure(figsize=(3.3,3.3), dpi=300) inver-
ter.draw() 

14. Assemble the genetic networks from the designs, prepare sam-
ples, and measure them in a serial dilution of inducer (Fig. 5b). 
The example shows the preparation of two 96-well plates with a 
gradient of AHL inducer, one with each genetic network. 
Fluorescence and OD are measured in a plate reader. 

15. Collect the experimental data, usually an Excel output, and 
upload it to Flapjack (Fig. 5d) 

16. Use the characterize method. This will get experimental data 
from Flapjack and fit the Hill1 Operator model, parametrizing 
alpha, K and n (Fig. 5d). Operators characterized from experi-
mental data can be used to build new genetic networks and 
simulate their behaviour (see Note 6). 

rpr_not_yfp.characterize( fj, receiver=iptg_ re-
yfp, inverter=vector2.id, media=media.id, strain=-

t  r  a  i  n  .  i  d  ,  s  i  g  n  a  l  = y  f  p  .  i  d  ,  b  i  o  m  a  s  s  _  
gnal=biomass_signal.id) gamma=0
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4 Notes 

1. A Flapjack account is required to run certain examples; if you 
do not already have an account, you may register following the 
instructions in the Flapjack chapter. 

2. The version of LOICA used during in this example is 1.0.5. 

3. Supplements are added to Sample. 

4. The original repressilator constructed by Elowitz [17] has the 
functional repressilator in one plasmid and the reporter in 
another. For simplicity, in this design, we get the reporter 
expressed with one of the repressors in a bicistronic fashion. 

5. This code is made using: from flapjack import*. 

6. More details can be found in https://github.com/RudgeLab/ 
LOICA/tree/master/notebooks. 

References 

1. Endy D (2005) Foundations for engineering 
biology. Nature 438(7067):449 

2. Aldulijan I, Beal J, Billerbeck S, Bouffard J, 
Chambonnier G, Ntelkis N, Guerreiro I, 
Holub M, Ross P, Selvarajah V et al 
(2023) Functional synthetic biology.. Synth 
Biol 8(1):ysad006 

3. McLaughlin JA, Beal J, Mısırlı G, Grünberg R, 
Bartley BA, Scott-Brown J, Vaidyanathan P, 
Fontanarrosa P, Oberortner E, Wipat A et al 
(2020) The synthetic biology open language 
(SBOL) version 3: simplified data exchange 
for bioengineering. Front Bioeng Biotechnol 
8:1009 

4. Mitchell T, Beal J, Bartley B (2022) pySBOL3: 
SBOL3 for python programmers. ACS Synth 
Biol 11(7):2523 

5. McLaughlin JA, Myers CJ, Zundel Z, 
Mısırlı G, Zhang M, Ofiteru ID, Goni-
Moreno A, Wipat A (2018) SynBioHub: a 
standards-enabled design repository for syn-
thetic biology. ACS Synth Biol 7(2):682 

6. Sents Z, Stoughton TE, Buecherl L, Thomas 
PJ, Fontanarrosa P, Myers CJ (2023) SynBio-
Suite: a tool for improving the workflow for 
genetic design and modeling. ACS Synth Biol 
12(3):892 

7. Crowther M, Wipat A, Goñi-Moreno Á (2022) 
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Rudge TJ, Myers CJ, Mante J (2023) Experi-
mental data connector (XDC): integrating the 
capture of experimental data and metadata 
using standard formats and digital repositories. 
ACS Synth Biol 12(4):1364 

11. Vidal G, Vitalis C, Rudge TJ (2022) LOICA: 
Integrating models with data for genetic net-
work design automation. ACS Synth Biol 
11(5):1984 

12. Bartley BA, Choi K, Samineni M, Zundel Z, 
Nguyen T, Myers CJ, Sauro HM (2018) pyS-
BOL: a python package for genetic design 
automation and standardization. ACS Synth 
Biol 8(7):1515 

13. Yeoh JW, Swainston N, Vegh P, Zulkower V, 
Carbonell P, Holowko MB, Peddinti G, Poh 
CL (2021) Synbiopython: an open-source soft-
ware library for synthetic biology. Synth Biol 6: 
Article ysab001 

14. Chapman B, Chang J (2000) Biopython: 
Python tools for computational biology. ACM 
Sigbio Newslett 20(2):15



412 Gonzalo Vidal et al.

15. Vidal G, Vitalis C, Muñoz Silva M, Castillo-
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